Skip to main content
Log in

Sarcopenia as a predictor of future cognitive impairment in older adults

  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

We investigated the association between the indices of sarcopenia and future risk of cognitive impairment in older adults.

Design

Community-based prospective cohort study.

Setting

Community.

Participants

A total of 297 participants aged ≥65 years without cognitive impairment at baseline (mean age, 71.9 ± 6.6 years; men:women, 158:139) and who underwent cognitive evaluation at the 5-year follow-up.

Measurements

Sarcopenia parameters including appendicular lean mass (ALM), handgrip strength, and the Short Physical Performance Battery (SPPB) score at baseline were compared according to the later progression of mild cognitive impairment (MCI) and/or dementia. The operational criteria suggested by the Foundation for the National Institutes of Health Sarcopenia Project were used. We performed multivariate logistic regression analysis to identify the independent indicators of the progression of cognitive impairment.

Results

Among the 297 participants, 242 (81.5%) remained cognitively normal (nonprogression group), whereas 55 (18.5%) showed progression of cognitive impairment (50 subjects (16.8%) to MCI and 5 subjects (1.7%) to dementia) (progression group). Compared with the nonprogression group, subjects in the progression group were older, had a lower educational level, and had lower physical function as assessed by the SPPB; a higher percentage were depressed. Other baseline markers of sarcopenia, including the ALM-to-body mass index ratio and handgrip strength did not differ significantly between the groups. The association between a low SPPB score (<9) and progression of cognitive impairment was maintained after adjustment for conventional risk factors for cognitive impairment (hazard ratio 2.222, 95% confidence interval 1.047–4.716, P = 0.038).

Conclusion

Decreased physical performance, as assessed by the SPPB, but not other markers of sarcopenia, was independently associated with the risk of later cognitive impairment in older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Table 2
Table 2

Similar content being viewed by others

References

  1. Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7: 137–152.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alzheimer’s Association. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement. 2013;9: 208–245.

    Article  Google Scholar 

  3. Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256: 240–246.

    Article  CAS  PubMed  Google Scholar 

  4. Etgen T, Sander D, Bickel H, Forstl H. Mild cognitive impairment and dementia: the importance of modifiable risk factors. Dtsch Arztebl Int. 2011;108: 743–750.

    PubMed  PubMed Central  Google Scholar 

  5. Rosenberg IH, Roubenoff R. Stalking sarcopenia. Ann Intern Med. 1995;123: 727–728.

    Article  CAS  PubMed  Google Scholar 

  6. Newman AB, Kupelian V, Visser M, et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61: 72–77.

    Article  PubMed  Google Scholar 

  7. Visser M, Goodpaster BH, Kritchevsky SB, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in wellfunctioning older persons. J Gerontol A Biol Sci Med Sci. 2005;60: 324–333.

    Article  PubMed  Google Scholar 

  8. Kim JH, Lim S, Choi SH, et al. Sarcopenia: an independent predictor of mortality in community-dwelling older Korean men. J Gerontol A Biol Sci Med Sci. 2014;69: 1244–1252.

    Article  PubMed  Google Scholar 

  9. Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69: 547–558.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dam TT, Peters KW, Fragala M, et al. An evidence-based comparison of operational criteria for the presence of sarcopenia. J Gerontol A Biol Sci Med Sci. 2014;69: 584–590.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang L, Larson EB, Bowen JD, van Belle G. Performance-based physical function and future dementia in older people. Arch Intern Med. 2006;166: 1115–1120.

    Article  PubMed  Google Scholar 

  12. Buchman AS, Boyle PA, Wilson RS, Tang Y, Bennett DA. Frailty is associated with incident Alzheimer’s disease and cognitive decline in the elderly. Psychosom Med. 2007;69: 483–489.

    Article  PubMed  Google Scholar 

  13. Abellan van Kan G, Cesari M, Gillette-Guyonnet S, et al. Sarcopenia and cognitive impairment in elderly women: results from the EPIDOS cohort. Age Ageing. 2013;42: 196–202.

    Article  Google Scholar 

  14. Auyeung TW, Kwok T, Lee J, Leung PC, Leung J, Woo J. Functional decline in cognitive impairment—the relationship between physical and cognitive function. Neuroepidemiology. 2008;31: 167–173.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hsu YH, Liang CK, Chou MY, et al. Association of cognitive impairment, depressive symptoms and sarcopenia among healthy older men in the veterans retirement community in southern Taiwan: a cross-sectional study. Geriatr Gerontol Int. 2014;14 Suppl 1: 102–108.

    Article  PubMed  Google Scholar 

  16. Alfaro-Acha A, Al Snih S, Raji MA, Kuo YF, Markides KS, Ottenbacher KJ. Handgrip strength and cognitive decline in older Mexican Americans. J Gerontol A Biol Sci Med Sci. 2006;61: 859–865.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Auyeung TW, Lee JS, Kwok T, Woo J. Physical frailty predicts future cognitive decline- a four-year prospective study in 2737 cognitively normal older adults. J Nutr Health Aging. 2011;15: 690–69

    Article  CAS  PubMed  Google Scholar 

  18. Taekema DG, Gussekloo J, Maier AB, Westendorp RG, de Craen AJ. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing. 2010;39: 331–337.

    Article  PubMed  Google Scholar 

  19. Lee JH, Lee KU, Lee DY, et al. Development of the Korean Version of the Consortium to Establish a Registry for Alzheimer’s Disease Assessment Packet (CERAD-K) Clinical and Neuropsychological Assessment Batteries. J Gerontol B Psychol Sci Soc Sci. 2002;57: P47–P53.

    Article  PubMed  Google Scholar 

  20. Sheehan DV, Lecrubier Y, Sheehan KH, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59 Suppl 20: 22–33;quiz 34-57.

    PubMed  Google Scholar 

  21. Yoo S, Kim Y, Noh J, et al. Validity of Korean version of the mini-international neuropsychiatric interview. Anxiety Mood. 2006;2: 50–55.

    Google Scholar 

  22. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, text revision (DSM-IV-TR): American Psychiatric Association, 2000.

    Book  Google Scholar 

  23. Bae JN, Cho MJ. Development of the Korean version of the Geriatric Depression Scale and its short form among elderly psychiatric patients. J Psychosom Res. 2004;57: 297–305.

    Article  PubMed  Google Scholar 

  24. Han JW, Kim TH, Lee SB, et al. Predictive validity and diagnostic stability of mild cognitive impairment subtypes. Alzheimers Dement. 2012;8: 553–559.

    Article  PubMed  Google Scholar 

  25. Mathiowetz V, Rennells C, Donahoe L. Effect of elbow position on grip and key pinch strength. J Hand Surg Am. 1985;10: 694–697.

    Article  CAS  PubMed  Google Scholar 

  26. Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49: M85–M94.

    Article  CAS  PubMed  Google Scholar 

  27. Linn B, Linn M, Gurel L. Cumulative illness rating scale. J Am Geriatr Soc. 1968;16: 622–626.

    Article  CAS  PubMed  Google Scholar 

  28. Levine ME, Crimmins EM. Sarcopenic obesity and cognitive functioning: the mediating roles of insulin resistance and inflammation? Curr Gerontol Geriatr Res. 2012;2012: 826398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nourhashemi F, Andrieu S, Gillette-Guyonnet S, et al. Is there a relationship between fat-free soft tissue mass and low cognitive function? Results from a study of 7,105 women. J Am Geriatr Soc. 2002;50: 1796–1801.

    Article  PubMed  Google Scholar 

  30. Camicioli R, Howieson D, Oken B, Sexton G, Kaye J. Motor slowing precedes cognitive impairment in the oldest old. Neurology. 1998;50: 1496–1498.

    Article  CAS  PubMed  Google Scholar 

  31. Kelaiditi E, Cesari M, Canevelli M, et al. Cognitive frailty: rational and definition from an (IANA/IAGG) international consensus group. J Nutr Health Aging. 2013; 17:726–734

    Article  CAS  PubMed  Google Scholar 

  32. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001; 56:M146–M157

    Article  CAS  PubMed  Google Scholar 

  33. Speechley M, Tinetti M. Falls and injuries in frail and vigorous community elderly persons. J Am Geriatr Soc. 1991; 39:46–52

    Article  CAS  PubMed  Google Scholar 

  34. Sperling RA, Johnson KA. Dementia: new criteria but no new treatments. Lancet Neurol. 2012; 11:4–5

    Article  PubMed  Google Scholar 

  35. Desai AK, Grossberg GT, Chibnall JT. Healthy brain aging: a road map. Clin Geriatr Med. 2010; 26:1–16

    Article  PubMed  Google Scholar 

  36. Hausdorff JM, Buchman AS. What links gait speed and MCI with dementia? A fresh look at the association between motor and cognitive function. J Gerontol A Biol Sci Med Sci. 2013;68: 409–411.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cesari M, Penninx BW, Pahor M, et al. Inflammatory markers and physical performance in older persons: the InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2004;59: 242–248.

    Article  PubMed  Google Scholar 

  38. Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006;119: 526. e529-526. e517.

    Article  PubMed  Google Scholar 

  39. Yaffe K, Kanaya A, Lindquist K, et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 2004;292: 2237–2242.

    Article  CAS  PubMed  Google Scholar 

  40. Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab. 2011;96: 2898–2903.

    Article  CAS  PubMed  Google Scholar 

  41. Craft S. Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res. 2007;4: 147–152.

    Article  CAS  PubMed  Google Scholar 

  42. Hogervorst E, Bandelow S, Combrinck M, Smith AD. Low free testosterone is an independent risk factor for Alzheimer’s disease. Exp Gerontol. 2004;39: 1633–1639.

    Article  CAS  PubMed  Google Scholar 

  43. Szulc P, Duboeuf F, Marchand F, Delmas PD. Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: the MINOS study. Am J Clin Nutr. 2004;80: 496–503.

    CAS  PubMed  Google Scholar 

  44. Berr C, Balansard B, Arnaud J, Roussel A-M, Alpérovitch A. Cognitive decline is associated with systemic oxidative stress: the EVA study. Etude du Vieillissement Arteriel. J Am Geriatr Soc. 2000;48: 1285–1291.

    Article  CAS  PubMed  Google Scholar 

  45. Weindruch R. Interventions based on the possibility that oxidative stress contributes to sarcopenia. J Gerontol A Biol Sci Med Sci. 1995;50 Spec No: 157–161.

    PubMed  Google Scholar 

  46. Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology. 2006;66: 1837–1844.

    Article  CAS  PubMed  Google Scholar 

  47. Verghese J, Annweiler C, Ayers E, et al. Motoric cognitive risk syndrome: multicountry prevalence and dementia risk. Neurology. 2014; 83:718–726

    Article  PubMed  PubMed Central  Google Scholar 

  48. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56: 303–308.

    Article  CAS  PubMed  Google Scholar 

  49. Woo J, Arai H, Ng TP, et al. Ethnic and geographic variations in muscle mass, muscle strength and physical performance measures. European Geriatric Medicine. 2014; 5:155–164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ki Woong Kim or Hak Chul Jang.

Additional information

These authors equally contributed to this work

These authors equally contributed as corresponding author.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, J.H., Moon, J.H., Kim, K.M. et al. Sarcopenia as a predictor of future cognitive impairment in older adults. J Nutr Health Aging 20, 496–502 (2016). https://doi.org/10.1007/s12603-015-0613-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-015-0613-x

Key words

Navigation